39 research outputs found

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated

    On the Sparsity and Aperiodicity of a Base Station Antenna Array in a Downlink MU-MIMO Scenario

    Get PDF
    An application study into irregular sparse arrays (ISAs) is proposed to function as base station antennas (BSAs) in a mm-wave multi-user multiple-input multiple-output (MU-MIMO) system. The results show that the sum rate capacity of ISAs can be increased relative to regularly-spaced BSA arrays with half a wavelength element separation, especially for a high number of users. This is due to the narrower beams formed by the larger antenna apertures of sparse arrays. Furthermore, the aperiodic distribution of antenna elements alleviates the problem of grating lobes in sparse arrays and is seen to improve the average power consumption of power amplifiers at the same time

    Sparse Automotive MIMO Radar for Super-Resolution Single Snapshot DOA Estimation With Mutual Coupling

    Get PDF
    A novel sparse automotive multiple-input multiple-output (MIMO) radar configuration is proposed for low-complexity super-resolution single snapshot direction-of-arrival (DOA) estimation. The physical antenna effects are incorporated in the signal model via open-circuited embedded-element patterns (EEPs) and coupling matrices. The transmit (TX) and receive (RX) array are each divided into two uniform sparse sub-arrays with different inter-element spacings to generate two MIMO sets. Since the corresponding virtual arrays (VAs) of both MIMO sets are uniform, the well-known spatial smoothing (SS) algorithm is applied to suppress the temporal correlation among sources. Afterwards, the co-prime array principle between two spatially smoothed VAs is deployed to avoid DOA ambiguities. A performance comparison between the sparse and conventional MIMO radars with the same number of TX and RX channels confirms a spatial resolution enhancement. Meanwhile, the DOA estimation error due to the mutual coupling (MC) is less pronounced in the proposed sparse architecture since antennas in both TX and RX arrays are spaced larger than half wavelength apart

    Effect of Acid-Base Balance on Cytokines Serum Levels and Short-Term Outcomes in Kidney Transplant Recipients; a Randomized Clinical Trial

    Get PDF
    Background: Control of blood acids and bases can help prevent many potentially life-threatening disorders in end stage renal disease (ESRD) patients. Aim of this study was to assess the effect of acid-base balance on cytokines serum levels and short-term outcomes in kidney transplant recipients.Materials and Methods: In this randomized clinical trial study, 40 patients with end-stage renal disease aged 18 to 70 who had undergone a kidney transplant from a living donor in Modarres hospital during 2016-2017 were included. The primary outcomes measured in this study were sera levels of cytokine such as IL-2, IL-10, IFN-γ and BUN and Cr serum after the treatment of acidosis in kidney transplant recipients.Results: Mean±SD of the patient’s age was 42±12.6 years. Results showed that there is a significant difference in means of IL-2, IL-10, and IFN-γ between the intervention and control groups over the time (for all p<0.05). We also found that correction of acidosis occurred with reduces of IFN-γ to -1.74 in the intervention group compared to the group receiving saline (P=0.011); and reduction for IL-2 was -1.37 (p=0.025). The concentration of anti-inflammatory cytokine of IL-10 was increased to 2.85 (P<0.001).Conclusion: The results clearly suggest that correction of acidosis in renal transplant patients during surgery helps improve the performance of allograft in the short run; however, more studies are recommended, taking into account the long-term and short-term effects of this intervention.Keywords: Cytokines, Kidney Transplantation, Acid-Base Balance, Randomized Controlled Tria

    Towards a Generic Model for MU-MIMO Analysis Including Mutual Coupling and Multipath Effects

    Get PDF
    A network model which accounts for antenna mutual coupling and multipath effects in a wireless channel is proposed as a tool to qualitatively evaluate the performance of a multi-user multiple-input multiple-output (MU-MIMO) system. The system performance is assessed when a zero-forcing (ZF) beamformed conventional uniform linear array (ULA) and a sparse array are employed as one sector of a base station antenna (BSA) in a single-cell network. It is shown that highly correlated user equipments (UEs) in a line-of-sight (LOS) scenario can be decorrelated to some extents, by a scattering environment in a non-line-of-sight (NLOS) scenario. This occurs due to increase of the spatial variation by a multipath effect. Furthermore, in both environments a sparse array realized by an increased interelement spacing is also capable for correlation reduction among users due to the narrower beams

    Multi-Panel Sparse Base Station Design with Physical Antenna Effects in Massive MU-MIMO

    Get PDF
    A novel base station antenna (BSA) configuration is presented to mitigate degrading physical antenna effects in massive multiple-input multiple-output (MIMO) systems, while minimizing implementation complexities. Instead of using a commonly considered single antenna panel comprising of many elements covering a wide field-of-view (FOV) of 120 degrees, L tilted panels are used employing L times fewer elements and L times smaller FOV per panel. The spatial resolution of each panel is enhanced by employing sparse arrays with suppressed (grating-lobe) radiation outside its corresponding FOV. Therefore, more directive antenna elements can be deployed in each panel to compensate for the effective isotropic radiated power (EIRP) reduction. While sectorisation reduces the antenna gain variation in 120 degrees FOV, cooperation among multiple panels in downlink beamforming is seen to be capable of inter-panel interference suppression for sum-rate enhancement. A network model is used as a multi-user (MU) MIMO simulator incorporating both antenna and channel effects. It is shown that when the number of base station antennas is ten times the number of users, the average downlink sum-rate in pure line-of-sight (LOS), rich and poor multipath environments is increased up to 60.2%, 23% and 11.1%, respectively, by multi-panel sparse arrays applying zero-forcing (ZF) precoding

    Array Configuration Effect on the Spatial Correlation of MU-MIMO Channels in NLoS Environments

    Get PDF
    In this paper, three different base-station antenna (BSA) configurations are compared in terms of inter-user spatial correlation in a two dimensional (2D) non-line-of-sight (NLoS) environment. The three configurations are: (i) a regular uniform linear array (ULA); (ii) a periodic sparse array; and (iii) an aperiodic sparse array. Electromagnetic modeling of the NLoS channel is proposed where scatterers are considered as resonant dipoles confined in clusters of scatterers (CoSs). While the probability of facing highly correlated user-equipments (UEs) in a multi-user multiple-input multiple-output (MU-MIMO) system is decreasing as the richness of mutipath increases, the sparsity (increased inter-element spacing) is seen to be capable of reducing this probability as well. This is due to the larger spatial variations experienced by the sparse array. Moreover, the results show that further improvement can be achieved by deploying an aperiodic distribution of antenna elements into the sparse antenna aperture

    Network Model of a 5G MIMO Base Station Antenna in a Downlink Multi-User Scenario

    Get PDF
    A system level network model of a 5G base station\ua0antenna (BSA) with massive multiple-input multiple-output\ua0(MIMO) capabilities is presented that incorporates antenna\ua0mutual interaction and signal processing aspects. The combined\ua0transmitter-channel-receiver in such a system is modeled by\ua0cascading Z-matrices to interrelate the transmitter and receiver\ua0port voltages/ currents to one another. The developed model is\ua0then subjected to the zero-forcing (ZF) beamforming algorithm to\ua0compute the per-antenna transmit power for a specific minimum\ua0signal level at the receiver as well as the required BSA effective\ua0isotropic radiated power (EIRP). The presented initial results\ua0show that in a line-of-sight (LOS) environment the required EIRP\ua0to achieve a 1 Gbps bitrate user link in a 15–200 m coverage\ua0ranges from 25–48 dBm, which increases to 31–54 dBm after\ua0incorporating first-order mutual coupling effects among the BSA\ua0elements

    MIMO Channel Capacity Gains in mm-Wave LOS Systems with Irregular Sparse Array Antennas

    Get PDF
    This paper investigates potential advantages of linear irregular sparse antenna arrays over their regular counterparts in a mm-wave line-of-sight (LOS) multiple-input multiple-output (MIMO) scenario. The comparison is based on numerical computations of MIMO eigenvalues of the corresponding channel matrices and the resulting channel capacity. Identical linear antenna arrays are assumed at the transmitter and the receiver sides. The compared regular and irregular arrays have an equal aperture length. Mutual coupling between elements within an array is assumed negligible due to the array sparsity. A 4 74 MIMO channel is studied, where we change the position of the two inner elements to obtain irregularly spaced arrays. It is shown that for some specific distances between TX and RX, the irregular array distribution can significantly improve the channel capacity in LOS. This observation opts for reconfigurable array designs

    The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017 : a systematic analysis for the Global Burden of Disease study 2017

    Get PDF
    Background: Stomach cancer is a major health problem in many countries. Understanding the current burden of stomach cancer and the differential trends across various locations is essential for formulating effective preventive strategies. We report on the incidence, mortality, and disability-adjusted life-years (DALYs) due to stomach cancer in 195 countries and territories from 21 regions between 1990 and 2017. Methods: Estimates from GBD 2017 were used to analyse the incidence, mortality, and DALYs due to stomach cancer at the global, regional, and national levels. The rates were standardised to the GBD world population and reported per 100 000 population as age-standardised incidence rates, age-standardised death rates, and age-standardised DALY rates. All estimates were generated with 95% uncertainty intervals (UIs). Findings: In 2017, more than 1·22 million (95% UI 1·19–1·25) incident cases of stomach cancer occurred worldwide, and nearly 865 000 people (848 000–885 000) died of stomach cancer, contributing to 19·1 million (18·7–19·6) DALYs. The highest age-standardised incidence rates in 2017 were seen in the high-income Asia Pacific (29·5, 28·2–31·0 per 100 000 population) and east Asia (28·6, 27·3–30·0 per 100 000 population) regions, with nearly half of the global incident cases occurring in China. Compared with 1990, in 2017 more than 356 000 more incident cases of stomach cancer were estimated, leading to nearly 96 000 more deaths. Despite the increase in absolute numbers, the worldwide age-standardised rates of stomach cancer (incidence, deaths, and DALYs) have declined since 1990. The drop in the disease burden was associated with improved Socio-demographic Index. Globally, 38·2% (21·1–57·8) of the age-standardised DALYs were attributable to high-sodium diet in both sexes combined, and 24·5% (20·0–28·9) of the age-standardised DALYs were attributable to smoking in males. Interpretation: Our findings provide insight into the changing burden of stomach cancer, which is useful in planning local strategies and monitoring their progress. To this end, specific local strategies should be tailored to each country's risk factor profile. Beyond the current decline in age-standardised incidence and death rates, a decrease in the absolute number of cases and deaths will be possible if the burden in east Asia, where currently almost half of the incident cases and deaths occur, is further reduced. Funding: Bill & Melinda Gates Foundation
    corecore